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Québec, QC, Canada
robert.bergevin@gel.ulaval.ca

Abstract

Although there has long been interest in foreground-
background segmentation based on change detection for
video surveillance applications, the issue of inconsistent
performance across different scenarios remains a serious
concern. To address this, we propose a new type of word-
based approach that regulates its own internal parameters
using feedback mechanisms to withstand difficult conditions
while keeping sensitivity intact in regular situations. Coined
“PAWCS”, this method’s key advantages lie in its highly
persistent and robust dictionary model based on color and
local binary features as well as its ability to automatically
adjust pixel-level segmentation behavior. Experiments us-
ing the 2012 ChangeDetection.net dataset show that it out-
ranks numerous recently proposed solutions in terms of
overall performance as well as in each category. A com-
plete C++ implementation based on OpenCV is available
online.

1. Introduction

The segmentation of foreground and background regions

in video sequences based on change detection is a funda-

mental, yet challenging task in computer vision. Often sim-

ply called background subtraction, it has been well studied

over the years, but so far no approach has been able to ef-

ficiently manage complex scenarios. In fact, most methods

must be finely tuned to achieve optimal results on different

video sequences: for example, dynamic outdoor scenes can

rarely be modeled as easily as static indoor scenes, forcing

the use of a less sensitive approach to reduce false classi-

fications. Ideally, an adequate algorithm should be able to

handle challenges such as rapid illumination variations, dy-

namic background regions (rippling water, swaying trees,

etc.) and intermittent motion without supervision or read-

justments. However, very few can actually accomplish this,

and even fewer can do it without requiring extensive train-

ing or sequence preprocessing.

Here, we propose a background subtraction method

suitable for a large variety of scenarios without man-

ual parameter readjustment. Specifically, we use a self-

adjusting approach based on a new kind of pixel-level word

model. PAWCS (Pixel-based Adaptive Word Consensus

Segmenter), our novel method, improves upon other code-

book approaches by using persistence-based words to ade-

quately model the background over longer periods of time.

Furthermore, our method introduces real-time learning and

adaptation capabilities as well as a complementary frame-

level dictionary. Its reliance on Local Binary Similarity Pat-

terns [2] at the pixel level to better detect spatio-temporal

changes as well as its dynamically constrained, feedback-

driven parameter control scheme also contribute in large

part to its novelty. More precisely, our contributions are

1) the introduction of a new word-based model that has

the ability to capture and retain background representations

over long periods of time. It uses color values, LBSP fea-

tures and persistence indicators all grouped into background

words to assimilate spatio-temporal information at the pixel

level. This model combines both local and global back-

ground representations in a two-step classification process;

2) the proposal of a novel feedback control scheme able

to isolate and process frame regions differently based on

background dynamics and segmentation results. Since it al-

lows internal parameters to be adjusted after every new pixel

classification, it is mostly unaffected by noisy regions and

intermittent dynamic background motion.

Evaluations based on the 2012 ChangeDetection.net

(CDnet) dataset [5] indicate that our new approach out-

performs 10 recently proposed methods not only in terms

of overall performance, but also in all scenario categories

taken individually. Furthermore, F-Measure comparisons

reveal that the relative improvement between our method

and the previous best is over 10% overall.
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1.1. Related Work

The CDnet workshop [5] recently offered a remark-

able proving ground for all background subtraction meth-

ods: different families of approaches could finally be di-

rectly compared in various categories. Among them, pixel-

based approaches solely rely on individual pixel intensities

to track background representations. Despite the simplicity

of this concept, two of the three best overall methods of [5],

namely PBAS [8] and ViBe+ [19], follow it as they are both

based on local intensity sampling. Most classic methods

based on Gaussian Mixture Models (GMM) [16] or Kernel

Density Estimation (KDE) [3] can also be considered part

of this family. On the other hand, texture-based methods

provide richer background representations by also analyz-

ing the relationships between neighboring pixels: those pre-

sented in [7, 10, 2, 15] all use Local Binary Patterns (LBP)

or LBP-like features for this purpose and achieve good

tolerance against illumination variations. Although pixel-

based and texture-based approaches have their benefits, they

also have their drawbacks, and “hybrid” techniques such as

[18, 17] have emerged to capitalize on their full combined

potential. Furthermore, recent work using neural networks

([11, 12]) and Markov Random Fields ([14, 21]) has also

focused on improving spatio-temporal segmentation coher-

ence in a similar mindset.

There are very different ways to build and update back-

ground models: for example, amid non-parametric ap-

proaches, both PBAS and ViBe+ rely on the sample consen-

sus ideas of [20, 1], while methods based on KDE use such

samples to estimate the probability density functions of the

background. Likewise, the codebook method proposed in

[9] and improved in [21] relies on the clustering of local re-

cent pixel representations into codewords to build its model.

Although this last approach can be considered unique and

effective, only a handful of authors actually followed the

idea of using such codewords to keep track of background

representations. Nonetheless, Kim et al.’s model [9] offers

many advantages over traditional ones, such as better adapt-

ability against multimodal regions while having a smaller

memory footprint. In the original pixel-level codebook ini-

tialization procedure, the measure of a codeword’s maxi-

mum negative run-length is used to filter out bad local repre-

sentations while keeping the periodically reoccurring ones

inside the model. In other words, local codebooks are able

to retain most forms of dynamic background while rejecting

any kind of foreground that might have been present during

training based on periodicity and number of occurrences.

However, this filtering step requires a predetermined thresh-

old that could vary based on the sequence type and the

size of the initialization window. Our proposed background

model is inspired by this previous work.

As stated earlier, a problem common to most existing

methods is that they lack flexibility: even though they can

provide good results on individual sequences when adjusted

properly, few of them can actually perform equally across

large datasets. In this regard, PBAS [8] opened up a new

horizon on the automatic adjustment of a method’s internal

parameters, but also suffered from delayed and fluctuating

sensitivity variations – especially when faced with intermit-

tent dynamic background motion. Our own self-adjustment

strategy is inspired by this work and solves this sensitivity

problem by using blinking pixel information.

2. Description of the PAWCS method
Our method is based on the characterization and moni-

toring of background representations at the pixel level us-

ing a word-based approach without clustering. The general

idea behind this new concept is to register the appearances

of pixels over time as “background words” in local dictio-

naries using color and texture information. These words

are then considered good representations of the background

when they are persistent, i.e. when they reoccur often. Un-

like other approaches where such representations are sim-

ply considered data samples, our solution favors persistent

background words over infrequent ones, which can be dis-

carded and replaced by better alternatives. The way we

characterize background representations is described in sec-

tion 2.1, and the general guidelines of our learning and up-

date strategies are described in section 2.2.

To improve how background representations are com-

pared and maintained in difficult conditions, we dynami-

cally adjust sensitivity thresholds and learning rates used in

our segmentation decisions and model update rules. These

adjustments are made based on the analysis of background

dynamics (i.e. local variation patterns and model fidelity)

and past segmentation results. This feedback process is pre-

sented in section 2.3.

Note that a C++ implementation of PAWCS which in-

cludes all specific details about the operations described be-

low is available online1, and a general overview is presented

in Fig. 1 using a block diagram.

2.1. Background Words and Dictionaries

In order to properly characterize and match pixel rep-

resentations with adequate sensitivity, we integrate LBSP

features with colors in pixel-level models as in [15]. These

LBP-like features were demonstrated in [2] to be more sen-

sitive to local changes than simple color comparisons. How-

ever, when used by themselves, they are often too sensi-

tive to change in dynamic background regions and highly

contrasted/noisy areas. This is why we combine them

with color values in our own local models. Therefore, we

take direct pixel color resemblance (based on L1 distance)

into consideration along with LBSP intersections (via Ham-

1https://bitbucket.org/pierre luc st charles/pawcs
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Figure 1. Block diagram of the Pixel-based Adaptive Word Consensus Segmenter. The role of each variable is presented in the following

sections. In our implementation, the post-processing operations are only based on median blur and blob smoothing operations.

ming distance) to test the similarity of pixel representations.

The combination of color and LBSP comes at a negligi-

ble cost since the required color information must already

be kept locally to compute inter-frame LBSP descriptors

(as described in [2]). The novelty that we propose is to

tie color/LSBP pairs to a persistence indicator which re-

flects their periodicity and number of occurrences amongst

recent local background observations (detailed in section

2.2). This modification allows some pixel representations

to be considered more important than others and also dic-

tates which should be replaced based on their relevance in

the model. The color/LBSP/persistence triplets we obtain

are defined as background words (BWs), and the pixel-level

models in which they are collected as local dictionaries.

Implementation-wise, a BW uses one byte per RGB chan-

nel for color information, two bytes for LBSP binary strings

(based on the 5x5 pattern of [2]) and integers to store its to-

tal occurrence count as well as time indexes at which it was

first/last seen. Finally, note that in addition to the use of a

local dictionary for each pixel x (noted CL(x) below), we

also propose to use a global dictionary for the whole frame,

which is detailed in section 2.2.

Similarly to [15], to improve robustness of our dictio-

naries against illumination variations, we use the following

encoding formula for LBSP descriptors:

LBSP (x) =
P−1∑
p=0

d(ip , ix) · 2p (1)

with

d(ip , ix) =

{
1 if |ip − ix| ≤ Tr · ic
0 otherwise

, (2)

where ix is the reference intensity value, ip is the pixel in-

tensity of the p-th neighbor of ix on the predefined P -length

LBSP pattern, and Tr is the relative LBSP threshold (by de-

fault, we use 1
3 ).

2.2. Learning and Update Strategy

Learning. Contrarily to previous work, we keep all

our BWs separated inside their local dictionaries instead of

clustering them into codewords. This way, rather than hav-

ing a few BWs with very different general representations

and high persistence, we obtain many overlapping BWs

with lower persistence, each covering a smaller portion of

the representation space. This kind of approach where over-

lap between local representations is allowed is very similar

to the ideology behind sample-consensus methods: to ob-

tain a “consensus” between a pixel model and the current lo-

cal observation (noted It(x)), a minimal subset of intersect-

ing background representations needs to be found. There-

fore, instead of looking for one BW match with an accept-

able persistence to consider a pixel background, we would

first need to calculate the persistence sum of all matched

BWs in a local dictionary. To do this, we use

qtot(x) =
∑

ω ∈CL(x)

q(ω, t) | (dist(It(x), ω) < R(x)
)
,

(3)

where q(ω, t) returns the persistence value of a BW at time

t (described further down in Eq. 5), dist(It(x), ω) returns

the color/LBSP distances between a given BW and the local

observation at x, and R(x) expresses the local color/LBSP

similarity thresholds (further discussed in section 2.3). Fi-

nally, the pixel at x would be classified as foreground (1) or

background (0) based on qtot(x):

St(x) =

{
1 if qtot(x) < W (x)
0 otherwise

, (4)

where St(x) is the output segmentation map, and W (x) is

a dynamic persistence threshold that will also be detailed in

section 2.3.

By its design, our “word-consensus” solution is much

more resilient to erroneous model drifting due to bad rep-

resentation updates. It also allows us to share individual

992



BWs between local dictionaries without the risk of corrupt-

ing them entirely. Moreover, any form of clustering would

have been incompatible with the pixel-level characterization

approach we use since LBSP descriptors cannot be gathered

or averaged easily. The increased cost of this new approach

due to the rising number of BWs to check for intersections

is, in practice, counter-balanced by the absence of cluster-

ing and can be further reduced when all BWs inside a dic-

tionary are already sorted by persistence. In our case, we

incorporated a simplified bubble sort algorithm inside the

local dictionary loop of Eq. 3 so that words could be indi-

vidually swapped once while processing every new frame.

As discussed earlier, we improve the state of the art by

proposing a persistence-based approach to determine which

BWs hold the most importance in a local dictionary. The

actual persistence of a given BW is obtained at time t using

q(ω, t) =
nocc

(tlast − tfirst) + 2·(t− tlast) + to
, (5)

where nocc is the BW’s total number of occurrences, tfirst
and tlast are, respectively, the time at which it was first and

last seen, and to is a predetermined offset value. The goal

of this equation is analogous to the maximum negative run-

length measure of the codebook method[9]: it helps quickly

eliminate BWs that do not reoccur very often. Note that, in

our case, persistence values are generally more affected by

a distant last occurrence than by a prolonged lifetime, as the

second term of the denominator, (t− tlast), is multiplied by

2. This means that we confer more importance to BWs that

are seen often over long periods of time while still taking

their periodicity into account. The time offset to is only

used to prevent newly created BWs from having important

persistence values; since persistence thresholds are dynam-

ically controlled (we discuss this in section 2.3), its actual

size has little effect on the rest of the algorithm, as long as

it is high enough (by default, we used to = 1000). With

this formula, a mandatory training and analysis phase to fil-

ter out unwanted BWs is unneeded, as the importance of all

BWs in a given local dictionary can be obtained at any time.

Hence, the actual segmentation process can be completely

initialized within the first two frames of any sequence, with

results becoming more stable over time. Furthermore, pre-

viously unseen BWs can be immediately inserted into local

dictionaries where they will either grow in importance or be

quickly replaced by others.

Update. Because we rely on the L1 distance to compare

the color component of BWs, to improve robustness against

illumination variations, we randomly update color represen-

tations inside BWs with actual color observations from the

analyzed frame. This is only done when their correspond-

ing local textures (as expressed through LBSP features) are

almost identical and when color distortion (as described by

Eq. 2 of [9]) is negligible. The idea behind these random

updates is that only a small proportion of all BWs should be

immediately modified when an observed scene’s illumina-

tion changes; those that are left untouched can then be used

to bring the model back to a previous state if said change

was only temporary. This first update mechanism also helps

prevent the saturation of local dictionaries due to the accu-

mulation of BWs that have similar LBSP descriptors and

normalized colors but different brightness.

Besides, an important trait shared between recent

sample-consensus methods (e.g. [8, 19, 1, 15]) can be easily

adapted to our new approach: improved spatial coherency

via pixel-level representations diffusion. Simply put, once

a given pixel x has been classified as background, adjacent

pixel models sometimes see one of their local representa-

tions be randomly replaced by It(x), the current observa-

tion at x. First described in [1], this technique leads not only

to better spatial coherence in areas with intermittent and

periodic motion, but it also helps reabsorb falsely labeled

background regions into the model. To achieve a very sim-

ilar result, we simply have to randomly pick an adjoining

local dictionary of CL(x) after Eq. 4 classifies x as back-

ground and update it again, increasing the number of oc-

currences for BWs that match It(x). This modification fur-

ther increases the persistence of common BWs in static ar-

eas, which in turn helps against camouflaged and immobile

foreground objects. Furthermore, unlike the spatial context

improvement proposed in the codebook approach of [21],

this change could be regarded as “proactive” since it allows

the model to passively build resistance against disturbances

such as vibrating cameras.

The model described so far is very flexible and adapts to

different challenges. For example, it behaves almost exactly

like the one in [9] for static regions as, once stable, it only

requires one or two BWs per local dictionary for proper

classifications. However, in dynamic background regions,

it behaves a lot more like a sample consensus model, where

up to 20 BWs could be active at once, all sharing similar

lower persistence. The randomized BW updates presented

earlier also help in scenes where illumination varies period-

ically; nonetheless, as shown in Fig. 2.c, some false classi-

fications are still present in sequences with strong dynamic

backgrounds such as moving tree branches or water foun-

tains. This is due in large part to the highly specific and

sensitive nature of the local representations we opted for:

BWs tied to rare periodic changes near stable regions often

carry very low persistence values due to their uniqueness,

and are thus often discarded and replaced before being seen

again.

Global dictionary. The need to retain each of these ex-

ceptional representations drives us to another important part

of our model, the frame-level dictionary. This new “global”

dictionary helps decrease the number of bad foreground

classifications by confirming that a given observation It(x)
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Figure 2. Segmentation results obtained on frame 1064 of the

’highway’ sequence (top row), frame 717 of ’fountain’ (middle

row) and frame 957 of ’canoe’ (bottom row), where (a) is the in-

put image, (b) is the ground truth, (c) is the result obtained without

the global dictionary and feedback improvements and (d) is our fi-

nal result. Note that both (c) and (d) use a 9x9 median filter as

post-processing.

cannot be matched with BWs regularly seen around x. Its

structure is relatively simple: it contains a predetermined

number of BWs acting as global representations, but instead

of generating them directly from observations within the

sequence, they are randomly copied from those contained

in local dictionaries. To improve the chances of finding a

match for a given representation, the color distortion mea-

sure of [9] is again used along with the L1 distance for color

comparisons, and the Hamming distance used to compare

LBSP binary strings is replaced by a Hamming weight func-

tion. Since these global BWs are shared between local mod-

els, their persistence can no longer be updated using Eq. 5;

we instead assign them 2D persistence maps. This way, we

can keep track of where they were recently seen by locally

accumulating q(ω, t) for all matching ω ∈ CL(x). More-

over, we can spread global BWs region boundaries by using

blur operations on this 2D map, and then decimate it every

given number of frames to keep the spread and accumula-

tion under control. In the end, foreground classification for

a given pixel x can be overruled if a matching global word

with good local persistence is found. Specifically, Eq. 4 is

replaced by

St(x) =

{
1 if qtot(x) + qG(x) < W (x)
0 otherwise

, (6)

where qG(x) returns the value contained at x in the 2D per-

sistence map of a matched global BW (if one is found; 0

otherwise).

2.3. Feedback-Driven Self-Adjustments

So far, we have presented how our model is built and

managed, but an additional part of its flexibility resides in

how all of its important internal parameters are automati-

cally adjusted. This is our second contribution. Internal

parameters can be redefined as pixel-level state variables,

and summarized in three classes: update rates (noted T (x))
which control the frequency of random actions such as

BW color updates, local neighboring dictionary updates and

global dictionary updates; distance thresholds (noted R(x))
which control how different two BWs can be while still be-

ing considered similar; and finally, persistence thresholds

(noted W (x)) which control the minimal matching BW per-

sistence required to classify a pixel as background.

To adjust these variables, we first rely on pixel-level

background dynamics indicators, noted Dmin(x), which

continuously monitor how analogous our pixel models are

to real observations. Our Dmin is essentially a recursive

rolling average map of the normalized minimal differences

between observations and BWs kept in local dictionaries. It

is not restricted to updates when St(x) = 0, meaning it can

smoothly adapt to most intermittent dynamic background

motion. More specifically, we use

Dmin(x) = Dmin(x)·(1−α) + dt(x)·α (7)

with

dt(x)=

{
dcolor/lbsp(x)+

W (x)−qtot
W (x) if qtot<W (x)

dcolor/lbsp(x) otherwise
,

(8)

where dcolor/lbsp(x) is the minimal normalized distance be-

tween color values and LBSP descriptors in CL(x), and α
is a constant learning rate. The persistence sum (qtot) is

used in this context to increase the value of Dmin when the

pixel at x cannot be classified as background based on the

persistence threshold, W (x). Note that all Dmin(x) values

are bound to the [0, 1] interval, where 0 would indicate a

perfectly static background and 1 a highly dynamic back-

ground or a region that the model cannot properly adapt to.

This formulation also implies that foreground objects tem-

porarily immobilized over x will cause Dmin(x) to keep

rising until said object is gone or has been integrated to the

model. As such, we cannot use Dmin(x) alone to control

the entire feedback process since it might lead to improper

variable adjustments in some scenarios.

As a complement to Dmin(x), we propose another pixel-

level indicator, noted v(x), which helps reveal the nature of

the region over a given pixel x. This indicator works based

on the assumption that dynamic background regions will

show more blinking foreground pixels in raw segmentation

results than uniform regions (whether purely foreground or

background). As such, it can guide feedback by constrain-

ing parameter adjustments when they are not truly needed

(as is the case for intermittent foreground object motion).

The way segmentation noise is captured and turned into

pixel-level indicators is simple: first, for every new segmen-

tation map St, an XOR operation with St−1 exposes a map

of all new blinking pixels, noted Xt. Moving object borders
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are removed from this result by nullifying all pixels of Xt

that intersect with the post-processed version of St. Then,

for every pixel x, we treat v(x) as an accumulator:

v(x) =

{
v(x) + 1 if Xt(x) = 1
v(x)− 0.1 otherwise

(9)

Note that we also clamp the result of v(x) to non-negative

values. This approach dictates that static foreground or

background regions would have v(x) ≈ 0, while regions

with noisy labels would have v(x) � 0. As a side note,

we kept post-processing operations to a minimum and rely

only on simple morphological operations and median filter-

ing to get rid of salt and pepper noise in St; this is enough

to eliminate all blinking pixels in our final results.

Based on the combination of Dmin and v, we introduce

new dynamic controllers for our internal parameters. First,

we define the complete relation behind local update rates:

T (x) =

{
T (x) + 1

v(x)·Dmin(x)
if St(x) = 1

T (x)− v(x)
Dmin(x)

if St(x) = 0
(10)

where T (x) is bound to the [1,256] interval. Like other

sample-consensus methods, we use a 1/T (x) approach

to calculate local update probabilities. Thus, consider-

ing the fact that high T (x) values lead to fewer updates,

this relation means that when foreground pixels are de-

tected in static background regions with low segmentation

noise, model updates will almost immediately stop. In

other words, T (x) will max out quickly due to v(x) ≈
Dmin(x) ≈ 0. However, dynamic and noisy background

regions will keep allowing model updates for much longer,

as in those cases, v(x) � 0 and Dmin(x) ≈ 1, which re-

sults in smoother variations. This is beneficial, as in such

situations, foreground pixels are more likely to be segmen-

tation noise.

In most cases of dynamic background motion, having a

model that updates very frequently is usually not enough to

reduce false foreground labeling. Adjusting distance thresh-

olds for local representation matching is often required; in

our case, both color and LBSP distance thresholds are in-

herited from R(x). The basic feedback relation between

this variable and our pixel-level indicators can be described

as

R(x) =

{
R(x) + v(x) if R(x)<(1+Dmin(x)·2)2
R(x)− 1

v(x) otherwise

(11)

Note that R(x) can only be strictly greater or equal to 1;

this lower limit reflects the lowest possible distance thresh-

olds, i.e. the noise threshold used in perfectly static regions.

We opted to control R(x) via Dmin(x) based on an expo-

nential relation, which we determined was better suited to

handle highly uncertain local representation matching when

Dmin(x) � 0. Here, v(x) directly controls the variation

step size of R(x); in static regions, it prevents R(x) from

being increased too fast (which helps against camouflage

problems), and in dynamic regions, it prevents it from fluc-

tuating based on the current value of Dmin(x). Following

that, we obtain color and LBSP distance thresholds, respec-

tively Rcolor(x) and Rdesc(x), using

Rcolor(x) = Ro
color ·R(x) (12)

and

Rdesc(x) = Ro
desc + 2R(x), (13)

where Ro
color and Ro

desc are their minimal values (we use

20 and 2). In this case, while color thresholds are directly

proportional to R(x), LBSP thresholds rely on an exponen-

tial relation which reflects their nature: when R(x) is high

enough, it allows them to be completely ignored in most

dynamic regions, dramatically reducing spatial sensitivity.

Since distance and persistence are already closely related

through their influence on the feedback process (via Dmin),

we keep the relation behind persistence thresholds simple,

defining it as

W (x) =
q(ω0, t)

R(x) · 2 , (14)

where ω0 is the first BW of CL(x); it is used as a reference

here since it generally carries the highest persistence within

its local dictionary (since it is constantly being sorted). The

idea behind W (x) is to always have at least one local BW

with enough persistence to assign a pixel as background

by itself. Furthermore, as stated earlier, this takes care of

the need to rely on a specific persistence offset value since

all thresholds stored in W are kept relative to the actual

persistence values of local dictionaries. This means that,

unlike most change detection methods, we do not prede-

fine how long old background representations may be kept

in the model once they are no longer seen. This duration

depends on the nature of the region, on the periodicity of

newer representations and on how persistent the old repre-

sentations were during their lifetime. This is a strong ad-

vantage in practice, especially against intermittently mov-

ing foreground objects. For example, our model could the-

oretically keep the true background of a parking lot active

forever, even if cars are parked in every available spot, given

enough “empty parking” footage.

3. Experiments
In order to properly evaluate how well our new approach

handles a wide spectrum of complex scenarios, we decided

to test it using the CDnet dataset and compare our results to

the methods presented in [5] and those reported on the offi-

cial website. This dataset is one of the largest to date in this

regard: it contains a total of 31 video sequences obtained
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Category Re Sp FPR FNR PWC Pr FM

BSL 0.9408 0.9980 0.0020 0.0592 0.4491 0.9394 0.9397

CJT 0.7840 0.9935 0.0065 0.2160 1.4220 0.8660 0.8137

DBG 0.8868 0.9989 0.0011 0.1132 0.1917 0.9038 0.8938

IOM 0.7487 0.9945 0.0055 0.2513 2.3536 0.8392 0.7764

SHD 0.9172 0.9932 0.0068 0.0828 1.0230 0.8710 0.8913

THM 0.8504 0.9910 0.0090 0.1496 1.4018 0.8280 0.8324

overall 0.8547 0.9949 0.0051 0.1453 1.1402 0.8746 0.8579

Table 1. Complete results for our proposed method, PAWCS, using the 2012 CDnet dataset and evaluation tools.

Method FMOverall FMBSL FMCJT FMDBG FMIOM FMSHD FMTHM

PAWCS 0.858 0.940 0.814 0.894 0.776 0.891 0.832
DPGMM[6] 0.776 0.929 0.748 0.814 0.542 0.813 0.813

SGMM-SOD[4] 0.766 0.921 0.672 0.688 0.715 0.865 0.735

PBAS[8] 0.753 0.924 0.722 0.683 0.574 0.860 0.756

LOBSTER[15] 0.751 0.924 0.742 0.568 0.577 0.873 0.825
PSPMRF[14] 0.737 0.929 0.750 0.696 0.564 0.791 0.693

SCSOBS[12] 0.728 0.933 0.705 0.669 0.592 0.778 0.692

ViBe+[19] 0.722 0.871 0.754 0.720 0.509 0.815 0.665

SOBS[11] 0.716 0.925 0.709 0.644 0.563 0.772 0.683

Cheby[13] 0.700 0.865 0.642 0.752 0.386 0.833 0.723

KNN[22] 0.679 0.841 0.689 0.686 0.503 0.747 0.604

Table 2. Overall and per-category F-Measure scores of the 8 best methods originally tested on the CDnet dataset, as well as more recent

ones. Red/bold entries indicate the best result and blue/italics the second best.

from various sources. These are split into six different cate-

gories: baseline (BSL), camera jitter (CJT), dynamic back-

ground (DBG), intermittent object motion (IOM), shadow

(SHD) and thermal (THM). The ground truth, which con-

sists of ∼ 90, 000 manually labeled frames, is provided

along with evaluation tools to ensure that all methods are

always tested uniformly. The performance metrics we use

are as described in [5] and include recall (Re), specificity

(Sp), false positive rate (FPR), false negative rate (FNR)2,

percentage of wrong classifications (PWC), precision (Pr)

and F-Measure (FM). Note that due to space constraints,

we only present quantitative results below; qualitative re-

sults are provided as supplemental material to this paper,

and our complete results can be downloaded from the CD-

net website.

First, we show in Table 1 the averaged metrics for our

complete method in individual categories as well as overall.

We can notice how the increased sensitivity of our method is

demonstrated through good recall scores (and low false neg-

ative rates). This is, as stated earlier, due to the highly spe-

cific nature and long lifetime of the color/LBSP/persistence

2Note that the FNR formula used in [5] is incorrect and has since been

modified on www.changedetection.net; we used the up-to-date version for

Table 1.

triplets we use to characterize local background represen-

tations. Besides, each test group shows balanced results in

both recall and precision, which lead to good F-Measure

scores. This also indicates that our method does not suf-

fer from sensitivity problems as much as PBAS did due to

its feedback components, thanks to our own two-variable

dynamic controllers. The most challenging category in our

case is intermittent object motion, followed by camera jit-

ter and thermal; these three were also considered the most

challenging for all methods in [5].

Then, we show in Table 2 per-category and overall F-

Measure scores for the best methods evaluated during the

2012 Change Detection Workshop, as well as more recent

ones. As noted in [5], the general performance of a method

is usually closely related to its F-Measure score, hence its

selection as the common ground for all our comparisons.

As such, we can see that we outperform all other solutions

in all six scenario categories, with baseline and thermal

showing the smallest improvement. The intermittent ob-

ject motion category gives outstanding results in our case;

this may be explained by the increased lifetime of back-

ground representations due to our persistence analysis strat-

egy, which leads to decreased foreground absorption speed

and instantaneous model restitutions in previously occluded
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areas. Besides, we can also notice a relative performance

improvement of 10.6% for the overall results over the sec-

ond best approach, DPGMM. An interesting comparison

can also be made here: LOBSTER, which was proposed

in [15], is clearly outperformed by our method, and obtains

somewhat close scores in only two out of six categories.

Although both use color and LBSP features to model pixel

appearances, this ultimately shows that a word-based ap-

proach using persistence indicators and self-adjusting pa-

rameters is preferable for most change detection scenarios.

4. Conclusion
We proposed a new background subtraction algorithm

that analyses the periodicity of local representations based

on color and texture information in order to build a new

type of persistence-based model. We showed how this algo-

rithm can improve its segmentation results by continuously

adjusting its internal parameters via feedback loops. Ex-

periments show that our new method outperforms the best

methods tested for the 2012 CDnet workshop as well as

more recent ones in terms of F-Measure scores. Our pro-

posed model benefits from the properties of both classic

word-based models and sample consensus models by using

non-overlapping background words that rely on local repre-

sentation persistence information. Our results could be fur-

ther improved by using more sophisticated post-processing

operations.
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